系别:信管系
职称:讲师
E-mail: yuqi_2019@163.com
一、个人简介
学习经历
2017年9月 获学士学位(电子商务专业,东北大学秦皇岛分校)
2023年9月 获博士学位(管理科学与工程专业,上海大学)
二、研究成果
主要承担项目
1.“从“产品”到“场景”一一沉浸式场景化电商情景下消费者购买行为的影响机制及场景营销策略研究(2025年度浙江省哲学社会科学规划“高校基本科研业务费改革”专项课题,2024-2027)
论文
1. S. Li*, Y. Zhang, Z. Yu, F. Zhang, H. Lu, Predicting the influence of viral message for VM campaign on Weibo, Electronic Commerce Research and Applications. 36 (2019) 100875. (SSCI&SCI检索,JCR Q1,FMS B级)
2. Y. Zhang, S. Li*, Z. Yu, F. Zhang, H. Lu, A 2020 perspective on “Predicting the influence of viral messages for VM campaigns on Weibo,” Electronic Commerce Research and Applications. 40 (2020) 100949. (SSCI&SCI检索,JCR Q1,FMS B级)
3. S.G. Li, Y.Q. Zhang*, Z.X. Yu, F. Liu, Economical user-generated content (UGC) marketing for online stores based on a fine-grained joint model of the consumer purchase decision process, Electronic Commerce Research. 21 (2021) 1083–1112. (SSCI检索, JCR Q3)
4. S.G. Li, F. Liu, Y.Q. Zhang*, Z.X. Yu, Lean persuasive design of electronic word-of-mouth (e-WOM) indexes for e-commerce stores based on fogg behavior model, Electronic Commerce Research. (2023). (SSCI检索, JCR Q3)
5. S. Li*, Y. Zhang, Y. Li, Z. Yu, The user preference identification for product improvement based on online comment patch, Electronic Commerce Research. 21 (2021) 423–444. (SSCI检索, JCR Q3)
6. S. Li, F. Liu, Y. Zhang*, B. Zhu, H. Zhu, Z. Yu, Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review, Mathematics. 10 (2022) 3554. (SCI检索 JCR Q1)
7. S. Li, F. Liu, Y. Zhang*, K. Peng, Z. Yu, Research on Personalized Product Integration Improvement Based on Consumer Maturity, IEEE Access. 10 (2022) 39487–39501. (SCI检索, JCR Q2)
8. S Li, B Zhu, Y Zhang, F Liu, Z Yu.,A Two-Stage Nonlinear User Satisfaction Decision Model Based on Online Review Mining: Considering Non-Compensatory and Compensatory Stages. Journal of Theoretical and Applied Electronic Commerce Research 19.1 (2024): 272-296. (SCI检索)
三、教授课程
(1)数据结构思想与实现;(2)数据采集与可视化;(3)电子商务(英)
四、研究方向
(1)网络消费者购买及评价行为;(2)商务数据挖掘